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Abstract—Operating system noise, or “jitter,” is a key
limiter of application scalability in high end computing
systems. Several studies have attempted to quantify the
sources and effects of system interference, though few of
these studies show the influence that architectural and sys-
tem characteristics have on the impact of OS noise at scale.
In this paper, we examine the impact of three such system
properties: platform balance, “noisy” node distribution,
and non-blocking collective operations. Using a previously-
developed noise injection tool, we explore how the impact of
noise varies with these platform characteristics. We provide
detailed performance results that indicate that a system
with relatively less network bandwidth is able to absorb
more noise than a system with more network bandwidth.
Our results also show that application performance can
be significantly degraded by only a subset of noisy nodes.
Furthermore, the placement of the noisy nodes is also
important, especially for applications that make substan-
tial use of collective communication operations that are
tree-based. Lastly, performance results indicate that non-
blocking collective operations have the ability to greatly
mitigate the impact of OS interference. Combined, these
results show that the impact of OS noise is not solely a
property of application communication behavior, but is also
influenced by other properties of the system architecture
and system software environment.

I. I NTRODUCTION

Research has shown that operating system (OS) in-
terference is a key limiter of application performance
in large-scale systems [7], [9], [17], with much of this
work focusing on how different applications respond
to different amounts and types of noise. However, the
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measured impact of noise has varied widely between
systems, with some platforms showing relatively little
performance impact from noise [3] and others showing
substantial performance impacts [7], [9], [17].

In this paper, we study how a number of important
architectural and system software design features affect
the noise sensitivity of High-End Computing (HEC)
systems. In particular, we examine how the following
important system features impact the sensitivity of ap-
plications to OS noise:

• The hardwarebalance of the system, the ra-
tio of peak network bandwidth (bytes/second) to
peak compute performance (floating point opera-
tions/second) [1], [16].

• The isolation of “noisy” nodes running full-featured
operating systems to a subset of the nodes on the
system.

• The use of collective communication mechanisms
that are relatively insensitive to noise.

Our results provide important guidance to HEC hard-
ware and system software designers by demonstrating
that:

1) The impact of noise is dependent on machine
parameters - specifically network performance and
the resulting balance of the hardware platform;

2) Isolating noise to only a subset of system nodes
is not sufficient to mitigate the impact of noise at
scale on certain key HEC applications;

3) The placement of noisy nodes in the system
matters, with noisy nodes close to the root of
the system collective communication tree (rank
0) having less impact on application performance



than nodes further from rank 0; and,
4) Non-blocking collective reductions can substan-

tially mitigate the impact of noise on applications
running in HEC systems.

To our knowledge, this is the first such empirical study
on the impact system design parameters have on an HEC
applications sensitivity to OS noise.

The remainder of the paper is organized as follows.
Section II provides background on OS noise, its effect on
application performance in HEC systems, and the system
features listed that we hypothesize affect the impact
of noise on applications in HEC systems. Section III
describes the hardware platform we use to test the impact
of these system features on application noise sensitivity,
how we vary these features on this hardware platform,
and the applications we use to test how variations
in system features impact application noise sensitivity.
Section IV then presents and analyzes the results of
these experiments. Section V follows with discussion of
related work in this area, and Sections VI and VII present
directions for future work and conclude.

II. BACKGROUND

A. OS Noise

The detrimental side effects of OS interference on
massively parallel processing systems have been known
and studied, primarily qualitatively, for nearly two
decades [19]. Previous investigations have shown that
the global performance cost of noise is, in many cases,
due to the variance in the time for processes to participate
in a collective operation, such asMPI_Allreduce,
resulting in the accumulation of noise at scale [15].
These interruptions occur for a variety of reasons, from
the periodic timer “tick” commonly used by many com-
modity operating systems to keep track of time, to the
scheduling points used to replace the currently running
process with another task or kernel daemon. In each
of these cases, processor cycles are taken away for the
duration of the noise event, which can typically vary
from a few microseconds to a few milliseconds [3], [17].
A number of recent studies [7], [9], [17] have shown
that even relatively minimal OS noise (e.g. 2.5% OS
overhead) can reduce the performance of applications at
scale by orders of magnitude.

B. System Features Affecting Noise

While noise has been recognized as a substantial
factor in application scaling in HEC systems, different
platforms have seen dramatic differences in how much
impact noise has had on applications, and a number of
techniques have been proposed for mitigating the impact

of system noise on applications [13]. For example,
noise injection studies on two different systems, the
Cray Red Storm system [7] and the IBM BlueGene/L
system [3] measured dramatically different slowdowns
in MPI_AllReduce performance in the presence of
small amounts (e.g. 2.5%) of injected noise. Exactly
what accounts for the different noise sensitivities of
these two systems is not clear; system differences that
could affect noise propagation include the different
compute/communication balances of the two systems,
BlueGene/L’s isolation of operating systems with non-
trivial amounts of noise to a subset of its nodes, or
the noise-resistant collectives that BlueGene/L includes
in the form of a hardware collective communication
network.

1) System Balance:System balance, the ratio of peak
network bandwidth (bytes/second) to peak compute per-
formance (floating point operations/second) [1], [16] is
one potential system hardware feature that we hypothe-
size could change the impact of OS noise on application
performance. Previous work has shown that a bytes-to-
flops ratio of one results in the best performance for a
typical HEC workload [16]. However, given the ever-
increasing compute performance available from multi-
core processors and the inability of network performance
to keep pace, well-balanced machines are becoming in-
creasingly difficult to design and deploy. Our supposition
is that OS noise is less likely to impact applications on
systems that are less balanced, since OS noise is more
likely to be absorbed in an environment where there are
potentially excess compute cycles available.

2) OS Noise Isolation:Isolating OS services to a
subset of system nodes has been a popular technique
mitigating the impact of necessary OS noise on appli-
cation performance. The ASCI Q system, for example,
was changed to run most system services on dedicated
processors and dedicated nodes in response to the well-
known study of the impact of noise on the SAGE ap-
plication [17]. Similarly, IBM BlueGene-series systems
run a low-noise Compute Node Kernel (CNK) [14] on
most compute nodes, and distribute Linux OS service
nodes throughout the system to which system calls
are forwarded from CNK-based nodes in an effort to
isolate OS noise in the system. Finally, we note that
a similar strategy was proposed for supporting full-
featured operating system services on the original Sandia
Intel Paragon system [10], but was never deployed to
production. Our hypothesis is that this isolation of OS
noise can substantially reduce the impact of noise to
applications in the system, but that the placement of
“noisy” nodes in the system may matter.
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3) Noise-resistant Collectives: Finally, since
collective communication primitives such as
MPI_AllReduce have been shown to be a key
factor in accumulating noise in HEC systems, a variety
of noise-resistant collective communication primitives
has been proposed as a possible means of mitigating
this effect. Hardware-based collective communication
primitives are one such technique, though they have had
mixed success. Hardware-assisted barriers on the ASCI
Q system, for example, had little impact on improving
SAGE performance in the presence of noise [17], while
the more general hardware-based collectives on IBM
BlueGene-series systems [2] are generally regarded as
an important source of that system’s scalability.

Similarly, non-blocking collectives have been pro-
posed to the recently reconvened MPI Forum for in-
clusion in MPI-3 [8] as another means of reducing the
impact of OS noise on large-scale applications that re-
quire collective communication. Similar to non-blocking
point-to-point operations, non-blocking collectives allow
an application writer to hide the cost of the operation by
overlapping the network communication with computa-
tion. The key to benefiting from a non-blocking opera-
tion is the size of the overlap portion of the computation.
We hypothesize that the amount of overlap an application
is actually able to achieve between computation and
collective propagation is directly related to the ability
of noise-resistant collective implementations to absorb
noise.

III. A PPROACH

In this section, we provide an overview of the hard-
ware and software environment of the test system used
to evaluate the impact of the system features described in
Section II-B on noise sensitivity. This includes a descrip-
tion of the test platform, the changes to the platform we
have implemented in system software on this platform,
the three applications evaluated on this platform, and a
benchmark we have developed to evaluate the impact
of non-blocking collectives on noise propagation and
accumulation.

A. Hardware Platform

We used the Red Storm system located at Sandia
National Laboratories as a test platform. Red Storm is
a Cray XT3/4 series machine consisting of nearly 13
thousand nodes. For our experiments, we used a 3000-
node subset of the machine in dedicated mode. Each
compute node in this subset contains a 2.4 GHz dual-core
AMD Opteron processor and 4 GB of main memory.
Additionally, each node contains a Cray SeaStar [4]
network interface and high-speed router. The SeaStar

is connected to the Opteron via a HyperTransport link.
The current-generation SeaStar is capable of sustaining
a peak unidirectional injection bandwidth of more than
2 GB/s and a peak unidirectional link bandwidth of more
than 3 GB/s. An important characteristic of the SeaStar
network on the Cray XT is that it is interrupt driven.
When a message arrives at the SeaStar, it interrupts
the host processor, the host OS performs the necessary
protocol processing, and then programs the SeaStar’s
network DMA engines directly to deliver the incoming
message to the appropriate buffer in destination process’
address space. Red Storm is an ideal platform on which
to explore system balance, as it is one of the more
balanced modern-day systems.

B. Noise Injection

For our experiments, we modified the system to
run the Catamount lightweight kernel containing our
noise injection framework described in [7] instead of
the normal production version, along with additional
modifications allowing us to controlwhich nodes gen-
erated noise. The Catamount lightweight kernel is an
ideal environment for noise studies due to its extremely
low native noise signature and demonstrated record of
scalability. All of our experiments were run using one
process per node, thereby maximizing the overall balance
of the system.

For this work, we used noise signatures that represents
2.5% net processor interference, focusing on a 10Hz
2500µsec noise profile that is representative of kernel
daemon interference. We focused on this 2.5% profile
due to both specific measurements made on commodity
systems and results of previous research that demon-
strated the importance of this noise level [7], [17]. It is
important to note that unloaded systems (e.g. those doing
no communication, I/O, or memory management activi-
ties) can have lower noise signatures with corresponding
lower overheads. However, we believe these unloaded
noise patterns are not realistic for characterizing the
behavior of real-world HEC applications, and this view
is supported by recent results [15] that show significant
OS overhead from scheduling and ACPI interrupts on
loaded HEC Linux systems.

C. System Balance Modification

To evaluate the impact of system balance on the
noise sensitivity of HEC applications, we modified the
balance of the Red Storm system by degrading network
performance using an existing hardware mechanism.
In addition to a Red Storm full-bandwidth configura-
tion, we present results of 3/4, 1/2 and 1/4 bandwidth
configurations. These configurations correspond to the
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Fig. 1. MPI Ping-Pong link throughput for degraded bandwidths.

balance of the ASC Purple supercomputer located at
Lawrence Livermore National Laboratories, a commod-
ity single processor InfiniBand cluster, and a commodity
dual-processor InfiniBand cluster similar to that of the
Thunderbird cluster at Sandia National Laboratories,
respectively. Note, that IBM’s BlueGene/L&P series
of machines are even further imbalanced towards ex-
cess computation than the configurations examined here.
See [4] for a balance comparison of several recent large-
scale computing systems.

Figure 1 shows the resulting MPI ping-pong band-
width numbers. For message sizes less than 4 KB, the
bandwidth of the three scenarios are nearly equal due to
message overhead, but for message sizes greater than 4
KB, the bandwidth curves diverge, with 1 MB messages
topping off at around 1900 MB/sec, 3/4 bandwidth at
slightly more than 1600 MB/sec, 1/2 bandwidth at 1500
MB/sec and 1/4 bandwidth at just under 800 MB/sec. We
also verified that network latency numbers are unaffected
by these bandwidth changes.

D. Non-blocking Collectives

To test the impact of non-blocking collectives on
noise propagation and accumulation, we implemented
a non-blockingMPI_Allreduce collective operation.
Allreduce was chosen due to the sensitivity of this
collective operation shown in [7]. Although there are
a number of non-blocking collective libraries currently
in existence (most notably [8]), we chose to implement
our own in order to take full advantage of the SeaStar
interconnect on Red Storm.

Because using non-blocking collectives would re-
quire substantial changes to an application, we also
implemented a bulk-synchronous microbenchmark that
uses this non-blocking collective library. This bulk-
synchronous microbenchmark allows us to specify the

length of time of the compute phase before all nodes
join in the Allreduce-based synchronize step. We set the
synchronization step of the microbenchmark to occur
at a rate previously measured for the SAGE and POP
applications, described below.

E. Test Applications

When appropriate, we used three applications that
represent important HEC modeling and simulation work-
loads, CTH, SAGE, and POP, to evaluate the impact
of hardware and system software changes on noise
propagation and accumulation in applications. These
applications represent a range of different computational
techniques, all frequently run at very large scales (i.e.
tens of thousands of nodes), and are key applications
to both the United States Departments of Energy and
Defense. We briefly describe these applications below.

CTH [6] is a multi-material, large deformation, strong
shock wave, solid mechanics code developed by San-
dia National Laboratories with models for multi-phase,
elastic viscoplastic, porous, and explosive materials.
CTH supports three-dimensional rectangular meshes;
two-dimensional rectangular, and cylindrical meshes;
and one-dimensional rectilinear, cylindrical, and spheri-
cal meshes, and uses second-order accurate numerical
methods to reduce dispersion and dissipation and to
produce accurate, efficient results. It is used for study-
ing armor/anti-armor interactions, warhead design, high
explosive initiation physics, and weapons safety issues.

SAGE, SAIC’s Adaptive Grid Eulerian hydrocode, is
a multi-dimensional, multi-material, Eulerian hydrody-
namics code with adaptive mesh refinement that uses
second-order accurate numerical techniques [11]. It rep-
resents a large class of production applications at Los
Alamos National Laboratory. It is a large-scale parallel
code written in Fortran 90 and uses MPI for inter-
processor communications. SAGE routinely runs on
thousands of processors for months at a time.

The Parallel Ocean Program (POP) [12] is an ocean
circulation model developed at Los Alamos National
Labs that is capable of ocean simulations as well
as coupled atmosphere, ice, and land climate simula-
tions. Time integration is split into two parts: baro-
clinic and barotropic. In the baroclinic stage, the three-
dimensional vertically-varying tendencies are integrated
using a leapfrog scheme. The baroclinic stage consists
of a preconditioned conjugate gradient solver which is
used to solve for the two-dimensional surface pressure.
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IV. EXPERIMENTAL RESULTS

A. Changing System Balance

To measure the impact that changing system balance
has on system noise sensitivity, we ran each of the three
applications described in the previous section with dif-
ferent available network bandwidths and 2.5% injected
noise ranging from low-frequency/high-duration profiles
(10Hz/2500µsec) to high-frequency/low-duration pro-
files (1000Hz/25µsec). We then measured the amount of
excessslowdown that each application experienced after
subtracting out the 2.5% injected noise – that is, the
amount of additional noise thataccumulatedduring the
application run. Each data point represents the average
of three runs, and we ran each application at the largest
system size that an available data set supported and for
which we were able to get an allocation – 2500 nodes
in the case of POP, 3360 nodes in the case of SAGE,
and 2048 nodes in the case of CTH.

Figure 2 shows how noise accumulates for each of
POP, SAGE, and CTH with varying network band-
width and 2.5% noise profiles. Shifting the balance of
the system in favor of computation by reducing the
amount of network bandwidth available reduces the
performance impact of noise on SAGE and POP, though
POP in particular is still significantly impacted by low-
frequency/high-duration noise similar to that caused by
scheduling a kernel daemon. CTH also accumulates
less noise on an unbalanced system, but because it
accumulates little noise to begin with (approximately
12% in the worst case), this is less significant.

Noise accumulates under varying system balances for
each of these applications because of differences in the
amount of computation and types of communication they
perform. Figure 3 shows breakdowns of how POP and
SAGE divide their time between computation and differ-
ent communication primitives. POP, for example, spends
the majority of time at scale in smallMPI_Allreduce
operations and relatively little time in computation. As
a result, it still incurs substantial slowdown due to noise
accumulation (more than 1000% on 2500 nodes) even
when the system balance is tilted heavily in favor of
computation. SAGE, on the other hand, can leverage
an imbalanced system more effectively to reduce noise
impact because of its larger computational demands.
Finally, while noise has the least impact on CTH in any
case, changes in system balance do significantly affect its
performance, as CTH is network bandwidth limited [16].

B. Isolating Noise to a Subset of Nodes

To measure the impact of isolating noise-generating
actions onto a subset of system nodes, we varied the

percentage and location of noise-injecting nodes in the
system and measured the application noise accumulation.
Nodes injecting noise were generally chosen randomly
using a Fisher-Yates permutation [5] to shuffle the list of
MPI ranks of the job. We then choose the first N elements
of the list as the ranks of noisy nodes. Each data point
in the following graphs corresponds to an average of
at least 5 data points (maximum of 6) with error bars
shown.

1) Varying percentage of nodes injecting noise:
Figure 4 shows the impact on noise accumulation for
the three applications of isolating noise generation to a
varying percentage of system nodes. In the case of POP,
reducing noise generation to just 5-10% of the system
nodes still results in substantial application slowdown.
In particular, we note the slowdown for POP isnot
related purely to the number of nodes injecting noise;
for example, POP is slowed down by more than 500%
on 2500 nodes when only 250 nodes are injecting noise,
but slows down only nominally when 100% of the nodes
are noisy in the 256 node case.

In contrast, noise isolation appears to be a very
successful strategy for SAGE (as others have found [17]).
For example, isolating noise to roughly 10% of the
system nodes reduces noise accumulation in SAGE by
a factor of 3 on 2048 nodes. Finally, noise isolation
appears to be largely irrelevant to CTH. Also, in contrast
to POP and SAGE, the slowdowns for CTH (though
smaller than POP and SAGE) appear to be relatively
constant, independent of the number of noisy nodes.

2) Placement of noisy nodes:To study how changing
the location of noise injection affected application per-
formance, we used two different policies to place 125-
128 noisy nodes into a system run: random and sequen-
tial. Random uses the Fisher-Yates shuffle mentioned
above, while sequential places noise-injection nodes as
the first 125–128 nodes in the system starting at rank
zero.

As seen in figure 5, placement of noisy nodes in
the system can have a substantial effect. Noisy nodes
close to rank 0 result in less noise accumulation. We
believe this is due to the collective communication
primitives on the Sandia Red Storm system using tree-
based algorithms, with the root of the tree at rank 0. As
a result, placement of noisy nodes near the root limits
the accumulation of noise when performing collectives,
while randomly placing noisy nodes, including poten-
tially at leaves in the collective tree, allows more noise
to accumulate on average. To illustrate this difference,
we use aMPI_Allreduce microbenchmark on 128
nodes with eight noisy nodes either distributed randomly
or around rank zero. From Figure 6 we see that, at this
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Fig. 2. Accumulation of noise in application runtime with varying network bandwidth and different 2.5% net injected CPUnoise profiles.
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Fig. 3. Breakdown of application runtime between computation and various communication primitives with full network bandwidth and no
injected noise.
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scale, random distribution leads to a nearly factor of two
slowdown over the noisy nodes distributed around rank
zero.

C. Noise-Resistant Collectives

To examine the impact of noise-resistant collectives on
system noise sensitivity, we studied how increasing the
amount of overlap between application computation and
collective communication affected the noise sensitivity
of the synthetic bulk-synchronous benchmark described
in Section III-D. We achieved this overlap using the non-
blocking Allreduce collective also described above.

Figure 7 illustrates the slowdown of our non-blocking
microbenchmark with a low-frequency, high duration
noise signature, similar to that of a periodic kernel
thread or daemon. For this test, we specified the bulk-
synchronous interval to be that of what we measured for
SAGE [7] and the slowdown is in comparison to a run
with no noise. Each data point in the figure corresponds
to an average of ten runs with error bars shown. From
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Fig. 7. Slowdown of non-blocking Allreduce in bulk-synchronous
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computation

this figure, we see that in a noisy environment with
sufficient overlap, the slowdown due to noise can be
reduced to nearly zero. In this case in particular, a 2.5%
noise signature could be completely absorbed with 62%
overlap between application computation and collective
communication.

V. RELATED WORK

Though the impact of OS noise on HEC systems has
been studied for over 15 years [19], the seminal work of
Petrini et al. [17] most recently raised the visibility of
the impact of OS noise on application performance. This
thorough study investigated performance issues from OS
noise on a large-scale cluster built from commodity
hardware components, running a commodity operating
system, and running a cluster software environment
designed for data center applications. While the findings
of this paper from an OS perspective were largely well
known, such as turning off unnecessary system daemons,
the paper brought to light several important new findings
relevant to OS noise. The authors developed a micro-
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benchmark specifically for measuring OS noise on a
parallel machine; such benchmarks were previously non-
existent. Second, the paper demonstrates the inability of
communication micro-benchmarks to accurately reflect
and/or predict application performance. Also, the authors
offered a conjecture that OS noise is most damaging
when the application resonates with OS noise. Finally,
this work showed the advantage of dedicating a portion
of hardware resources to performing system tasks.

Beckman et al. [3] investigated the effect of user-
level noise on an IBM BG/L system. This system runs a
custom lightweight OS like Catamount that demonstrates
very little noise. This system contains a number of
hardware facilities which allow for collective operations
to be performed in hardware and therefore not sensitive
to CPU noise. In addition, this system has a balance
shifted towards excess computation in comparison to
other systems like the Cray XT series. In this paper the
authors showed that a properly configured Linux kernel
can have a noise signature similar to that of a lightweight
kernel. Using a user-level injection mechanism built
into the communication library and a series of micro-
benchmarks, the authors showed that noise levels had
to be very high in order to show any real impact. We
believe this difference in noise impact with other studies
is due to the difference in how noise is injected as well
as the architectural differences of the BG/L system.

Nataraj et al. [15] used the KTAU toolkit to investi-
gate the kernel activities of a general-purpose operating
system. This toolkit instruments the Linux kernel to
collect measurements from various kernel components
including system calls, scheduling, interrupt handling,
and network operations. The authors begin by showing
the effectiveness of the KTAU toolkit for measuring
the OS noise in Linux. In addition, they show how
their toolkit can be used to track the accumulation and
absorption of noise during the communication stages of
an application. However, this work, unlike ours, only
presents results from a 128-node development system
that may or may not generalize to a massively parallel
machine containing tens of thousands of nodes. More
importantly, while their tool can be used to identify
possible sources of noise, the authors do not relate the
effects of noise to the performance of a large-scale
application (e.g. the largest source of noise may not be
the most harmful).

Recently, we examined the sensitivity of OS noise
at scale for three real-world HEC applications using a
kernel-level noise injection framework on a well bal-
anced architecture [7]. In this paper we showed the
importance of how noise is injected and the applica-

tion communication characteristics that impact noise
absorption. For example, we show how the compu-
tation/communication ratios, collective communication
sizes, and other characteristics of an application, relate
to there ability to amplify or absorb noise. Finally,
this paper discusses the implications of our findings on
the design of new operating systems, middleware, and
other system software laying out how system software
tasks can be constructed as to minimize impact on HEC
applications.

A number of studies have been conducted regarding
the implementation and performance of non-blocking
collective implementations. Hoefler et al. [8] describe
the implementation of the non-blocking collective library
currently being considered for inclusion of the MPI-3
standard. In this paper, the authors show that the perfor-
mance benefit of non-blocking collectives is related to
the ability of the system to overlap the communication
cost of messages with computation of the application.
In addition this work outlines the importance of intel-
ligent network interfaces like the SeaStar on ensuring
independent network progress for HEC systems.

Finally, Alam and Vetter [1] characterize the system
balance requirements for GYRO, a Office of Science
fusion simulation code, and the POP climate model-
ing code investigated here. In this work the authors
measure the parallel efficiencies for these applications
on a number of parallel systems: an SMP cluster, a
shared-memory system, and a vector supercomputer.
This work shows the sensitivity of POP to MPI la-
tency and the bandwidth sensitivity of GYRO. Similarly,
Pedretti et al. [16] investigate the sensitivity of HEC
applications to link and injection bandwidth on the Cray
Red Storm machine at Sandia National Laboratories.
Using similar hardware methods employed in this paper,
the authors show the sensitivity of CTH and PARTISN to
link bandwidth and injection bandwidth (the bandwidth
of the point-to-point HyperTransport link connecting a
compute node’s Opteron CPU to its SeaStar network
interface) degradation.

VI. FUTURE WORK

There are several avenues of future work related to
this study. First, we intend to analyze more applications
in order to increase the understanding of application
sensitivity to noise. While the set of applications in this
study covers a range of important problems and scalable
computational techniques, additional application exper-
imentation would further increase the understanding of
the relationship between OS noise and HEC hardware
and system software design features. Obtaining access
to large-scale applications, problem sets, appropriate
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application scientist expertise, and dedicated system time
to run these applications has proven challenging, but we
believe that this approach is key to understanding the
overall impact of OS noise, especially as future program-
ming models may require additional system services with
additional system demands.

We are also interested in analyzing how basic OS
services, for example memory management, can in-
fluence the generation and impact of noise. We are
exploring modifications to our noise framework that
allow Catamount’s memory management strategy to be
more representative of a general-purpose OS like Linux.
Specifically, we are implementing a non-contiguous
memory page allocation scheme that better resembles
the way Linux allocates and manages physical memory
pages. There is evidence to suggest that these memory
management strategies can significantly influence the
scalability of certain HEC applications [18].

VII. CONCLUSION

In this paper, we showed how a number of important
architectural and system software design features affect
the impact of noise on HEC systems. Our results indicate
that these system characteristics have a significant impact
on the performance of applications at scale.

We used a previously-developed, kernel-based noise
injection utility to explore several important aspects of
OS interference. We showed that the impact of noise is
not solely a property of the communication characteris-
tics of an application. Using a hardware mechanism to
degrade network bandwidth performance, we show that
the relative peak compute-to-communication balance of
the system is also important. This particular analysis
helps to explain the disparity in observed results of
the impact of noise on systems with disparate balance
characteristics. Our results show that, in general, systems
with excess compute cycles tend to be less sensitive to
noise.

In addition, we explore whether isolating noise to only
a subset of nodes can lessen performance degradation.
We use our noise injection tool to impact only a subset
of compute nodes rather than affecting all nodes equally.
Results show that it takes a relatively small percentage
of nodes – even as little as 5% – to have a significant
impact on application performance. We also explore the
distribution of the noisy nodes to determine whether
placement makes any difference. Our results show that
placement of noisy nodes can also have a substantial
impact on application performance. If noise is generated
on nodes whose MPI rank is closer to rank zero, the
impact of noise is much less than if the noise is generated
on a subset of ranks further from rank zero. We validate

our hypothesis that this rank distribution effect is the
result of tree-based collective operations where the ranks
nearest the root are able to more easily absorb noise,
while nodes furthest from the root are not.

Finally, we investigate the ability of non-blocking
collective operations to mitigate the impact of OS noise.
We implement a non-blocking Allreduce operation and
a corresponding overlap benchmark. Combined with the
noise injection utility, we are able to explore the amount
of noise that a non-blocking collective operation could
potentially absorb. Results show that, for a typical noise
signature, a relatively modest amount of overlap between
computation and communication is enough to nearly
eliminate the impact of noise.

Together, these results increase our understanding of
how and why OS noise impacts applications. Deeper
knowledge about the important characteristics of noise-
sensitive applications and key system or architectural
features that can mitigate the negative impact of noise.
This knowledge greatly enhances the ability to design
future-generation platforms, system software, and appli-
cations.
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